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studied. The asymptotic form of the family of potential functions for the system near 
threshold is obtained by using catastrophe theory. The well-known scaling hypothesis in 
the general homogeneous function form in critical phenomena is shown to be a Characteristic 
of the asymptotic family. Four threshold exponents 0, S, 7, (I and their four accompanied 
threshold amplitudes B, D, r, A on both bistability and monotonic regions are estimated. 
The threshold exponents obey the same scaling laws as those in critical phenomena, while 
the threshold amplitudes obey the definite relations between exponents and amplitudes. 

1. Introduction 

There is a close analogy between the phase transitions in equilibrium systems and the 
abrupt transitions of steady states in non-equilibrium systems [l, 21. This analogy also 
occurs between the critical phenomena in equilibrium systems and the exponential 
behaviour of the abrupt transitions near thresholds, namely critical phenomenon 
analogy in non-equilibrium systems [2,3]. 

Catastrophe theory (cT), first developed by Thom to understand discontinuous 
phenomena in nature, is a theory about topological stability and singularity for families 
of functions [4,5]. When applied to discontinuous phenomena in any non-equilibrium 
system having a family of potential functions, it not only enables us to describe the 
abrupt transitions of steady states qualitatively, strictly speaking with diffeomorphic 
equivalent exactitude [4,5], but also gives us the exact asymptotic form of the family 
of potential functions near threshold [3,6]. CT is, therefore, powerful in discussing the 
critical phenomenon analogy in such non-equilibrium systems. 

In the present paper, we have as our aim the critical phenomenon analogy in the 
system of absorptive optical bistability (AOB) [7]. The time evolution equation for AOB, 

which carries a family of potential functions and is suitable for CT analysis, is given 
in the following section. In section 3 the asymptotic form of the family of potential 
functions for the system near threshold (xc, C,, y.) = (8, 4 , 3 f i )  is exactly derived. 
Then, the definitions of the threshold amplitudes and exponents are defined in parallel 
to the critical amplitudes and exponents in section 4, and the theoretical estimates of 
these amplitudes and exponents are made in section 5. Section 6 is devoted to the 
scaling relations obeyed by these threshold amplitudes and exponents and to the 
general homogeneous function characteristic of the asymptotic stationary potential of 
the AOB system near the threshold. Finally, in section 7, we draw some conclusions, 
making a brief comment on  [ 8 ] .  
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2. Time evolution equation for the AOB system 

In [7], the dynamics of AOB was studied in the semiclassical approximation by 
considering a mean-field quantum-mechanical model which consists of N ( N  >> 1) 
two-level atoms homogeneously filled in a pencil-shaped resonant cavity and driven 
by a coherent resonant incident field. Based on adiabatic elimination of the atomic 
variables the closed-time evolution equation for the AOB system reads 

dx 
-=K[y-X-2CX/(l+X2)] d t  (1) 

where x and y are the saturation parameters proportional to the transmitted field ET 
and incident field E,, respectively, x 2 0, y 3 0, C = g 2 N / 2 ~ y ,  is the atomic cooperation 
parameter controlled by the atom-relevant and cavity geometric parameters such as 
the atom density and cavity length, C 0, g is the coupling constant, K is the cavity 
damping constant, K << yL, y ~ l ,  and yI and Y I I  are, respectively, the transverse and 
longitudinal atomic relaxation rates. 

Equation (1) can be rewritten in such a manner that a family of potential functions 
is explicitly introduced: 

The family of potential functions, G(x, C, y ) ,  characterizes the system. In particular, 
the stationary equation of the system is 

and the value of parameter x in a steady state for arbitrary fixed C and y is given by 
a solution of (3), which minimizes the potential of the system at (C, y ) .  

The bistable behaviour in the sense that the parameter x (or the transmitted field 
Er) is a discontinuous function of the parameter y (or the incident field E,) with a 
hysteresis cycle was revealed. The bistability region of C > 4 and the monotonic region 
of C < 4 were predicted. One can find that the point (xc, C,, y e )  = (a, 4 , 3 4  is a 
threshold which distinguishes between the bistability and monotonic regions of the 
AOB system. Our interest is presently in the critical phenomenon analogy of the AOB 

system near this threshold. 
Mathematically, G(x, C, y )  in the vicinity of the threshold (xc, C,, y , )  is an unfold- 

ing of the function G(x, C,, y , )  or, in our terminology, a family of potential functions, 
in which x plays the role of order parameter and C and y are two control parameters. 
We cannot simply treat G(x, C, y )  as a function of x only. To describe the critical 
phenomenon analogy, we have to find the asymptotic form of the family G(x, C, y )  
near the threshold. CT is a good mathematical tool for this procedure. 

3. Asymptotic form of the family of potential functions 

For simplicity, we take the displacement transformations for the family G(x, C, y ) .  

x-x,=m C - C , = t  y - y , = h  (4) 
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where ( x c ,  C,, yJ = (a, 4,3&), and let 

G ( 4  6 h ) c  G ( x ,  C Y ) -  G ( x , ,  C,, Y J  
= ~ { ( m  + x,l2/2 - x:/Z - ( m  + x, ) (h  + yc )  +xa,+ ( t  + c.) In[ 1 + ( m  + x,)'] 

- C, In( 1 + x:)}. ( 5 )  
G( m, f, h )  characterizes the AOB system as well as G(x, C, y )  and now (m,  t, h )  = (0, 0,O) 
is its isolated threshold. 

i i ic IIICLIIVUS VL caicuiauun, nuiarion ana terms used beiow in ihis seciioii C B ~  be 
found in books on catastrophe theory [4,5] and in [6] .  

Letting t = h = 0 in G(m, t, h ) ,  we have 

.r.L---*l.. .A--'- -.,-..,.. I .~-  ~~.*.&:.~- 

(6 )  
K 

j 4 { G ( m ,  O,O)}=- m4 
16 

and hence 

m 5 = J s [  (f m i )  j 3 [  & G ( m ,  0, O)]] 

m 3  = j 3 [  (f) j 3 {  dm G ( m ,  0,O) 11 
where ;4, ;' 2nd j' 1re !he !r..r?cl!inn E!gebrlic operators defined by 

The equality ( 7 a )  implies that G(m,O,O)  is strongly 4-determinate, while (76) 
implies that the codimension of G(m, 0,O) is 2. We can choose m and m' as the 
cobases generating a cospace of G( m, 0,O): { m ,  m'], 

On the other band, owing to (5), we can find 

(8) 

Uh ( m )  - J ' {G(m,  0, h ) }  = --Km (9) 

J Jz 
at  2 

U , ( m ) - - J ' { G ( m ,  t ,O)}=-Km-+Km* 

d 

Jh 
at the point (t, h )  = (0,O). 5' in (8) and (9) is also a truncation algebraic operator, 

at s = 2, slightly different from the operator j ' .  
U , ( m )  and U h ( m )  may expand a polynomial space, denoted by { U , ( m ) ,  U , (m)} ,  

which coincides with the cospace of G ( m ,  0, O), {m,  m']. So the family G(m, f, h )  is 
universal according to the well-known Thom transversality theorem [4]. Furthermore, 
because G(m,  t, h )  is universal and M?G A,G(m, 0, 01, where M: is a set of poly- 
nomials, and, because G ( m ,  0,O) is strongly 4-de!erminate, there must exist a neigh- 
bourhood of the threshold or the origin, ( m ,  1, h )  = (0, O,O), in which the strong 
diffeomorphic equivalence 

G ( m ,  1, h ) - j j G ( m ' ,  O,O)+ t 'U,(m')+ h 'uh(m' )  (10) 

m'=m'(m,  t, h )  f '=  f'(f ,  h )  h ' =  h'(t,  h )  (11) 

holds, where the strong diffeomorphic transformation 
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does not change the origin and keeps the matrix 
3m' am' Jm' - - -  

am d t  ah 
ah' ah' ah' _ _ _  

unitary. 
As we are concerned only with the asymptotic behaviour of the AOB system near 

the threshold ( m ,  t, h )  = (0, 0, O), we can linearize this diffeomorphic transformation: 

m ' = m  f ' = i  h'= h. (12) 
Putting (8) and (9) into (lo), using (12) and dropping the higher infinitesimal terms 

as ( m ,  i, h j  is becoming ciose io (O,O, Oj,  we immediateiy obtain the asymptotic form 
of the family of potential functions near the threshold (xc, C,, yJ = (a, 4,3&): 

K & K  
ASY G ( m ,  i, h )  =- m4+-  tm-Khm 

16 2 
There are only three terms in ASY G ( m ,  1, h ) .  Two parameters t and h are 

independent and linearly coupled. Together with (13), the asymptotic time evolution 
equation of the AOB system in the vicinity of the threshold is 

dm a 
-- - -- ASY G ( m ,  i, h ) .  
d t  am 

4. Definitions of threshold amplitudes and exponents 

The critical phenomenon analogy in non-equilibrium systems can be described by 
means of threshold amplitudes and exponents, as well as the critical phenomena in 
equilibrium systems by means of critical amplitudes and exponents. Here for the AOB 

system we shall be concerned with four static threshold exponents and their accompany- 
ing amplitudes. We define them in parallel to the usual critical amplitudes and exponents 
i:: eq-i!ib:in~ sys!e-s ix =:der to fzi!i!ate comparison and to make them meascrab!e. 

Firstly, parameters m, i and h could each be negative or positive due to x 3 0 ,  
y 3 0 ,  equations (4). Settingy=3&in (3), we have C(x)=(3&-x)(1+x2) /2x,x30 
(AOB), and then we can find C(&)=4, C'(&)=O, C"(A)=O, C"'(&)<O. That 
indicates that x < & as C > 4 and x > & as C < 4 or, equivalently, m < 0 as f > 0 and 
m > O  as f < O .  So, the consistent definitions of the threshold amplitudes B and E', 
and the threshold exponents B and B' are 

E(-t)' h = O  t > O  

= [ B'(-t)P' h = O  i < o .  

When C = 4 ,  (3) yields y=x+8x / (1+x2) ,  x 3 0  (AOB). The inequality y'(&)>O 
directly gives us that y > 3& as x >  and y < 3& as x <A or, equivalently, h > 0 
as m > O  and h<O as m < O .  This determines the manner by which the threshold 
amplitudes D and D', and the threshold exponents 6 and 6' are defined: 

D m  i = o  h>O 
t = O  h<O 
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In a similar way, we can consistently define other threshold amplitudes r, r', A, 
A'and threshold exponents y, y',  a, a'. We list all the definitions ofthreshold amplitudes 
and exponents in table 1. For comparative purposes, the definitions of the critical 
amplitudes and exponents in the equilibrium magnetic system are listed correspond- 
ingly in the right-hand column of the table. 

Table 1. The definitions of the threshold amplitudes and exponents. ,9, p', S, b', Y. Y ' ,  (I, 
a' are the threshold exponents, while €I, B', D. D ,  r, r', A, A are the threshold amplitudes. 
They are defined in parallel to the usual critical amplitudes and exponents in the equilibrium 
magnetic system. 

AOB system Magnetic system [9] 

m, order parameter 
1, control parameter relative to the atomic 1, reduced temperature, t = ( T -  TJ T, 
cooperative parameter C, r = C - Cc 
h, control parameter relative to the normalized H,  applied magnetic field 
incident field, h = y - y .  

M ,  order parameter 

S, formal entropy, S = -dASY G/ai s, entropy, s= -aG/aT 

M = B ( - 0 8  H = O  I < O  
h = O  i > o  

B'( - i )8 '  h = O  1<0 

ID" 1 = 0  h > O  

h < O  

h = O  i > O  
h = O  I < O  JH 

H = D M ~  1 = 0  H > O  

H = O  l < O  
dM 

a s  A 
h = O  t < o  ai CL' 

=-= r'(-i)T' 

H = O  t < O .  =-=- (-1)"' 
h = O  1>0  

5. Estimates of threshold amplitudes and exponents 

Due to (13) and (14), the asymptotic stationary equation of the AOG system near the 
threshold (xc, C,, y,) = (A, 4 , 3 4  is 

A 
im3+- t - h = 0. 

2 

When h = 0, (15) has the solution 

m = -(1Z)'16( t)')' 

B = B'= ( ]2 ) '16  and P = P ' = f .  
which implies 

Letting f = O  in (15) immediately yields 

h 4 

which leads to 

LJ=D=a and 8 = 8'=3.  

(16) 
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Table 2. The values ofthe threshold amplitudes and exponents. B'= 0, S'= S, a'= a, y '=  y, 
B'= B, D =  D. A =  A, P = T .  It is ea5y to %e that the threshold exponents of the AOB 

system are beyond those of the Landau type. The AOB system could be a prototype of a 
new universality class in critical phenomena. 

B i 

a f 
B (12)1'6 

S 3 
Y 5 

D 

Next, taking a derivative on both sides of (15) with respect to the parameter h, and 
then letting h = 0, we have 

In addition, with (16) we have 

Therefore, 
r = rf +(12)-1/3 and y =  f = f .  

We take the second-order derivative of ASY G( m, 1, h )  with respect to the parameter 
t and obtain 

a2ASY G(m, I, h )  am - 
at2  4 at  

where (15) is used for simplifying. On the other hand, the equation 

arises from taking a derivative of (15) with respect to the parameter t. Inserting (19) 
into (18) and using (16) we obtain 

K (  12)-1/3( -t)-Z/' a2ASY G ( m ,  1, h )  
at2 

- 

and hence 

K a=a '=$ .  
A = A'=-  (12)2/3 and 

18 

The values of these threshold amplitudes and exponents are listed in table 2. 

6. Scaling relations and scaling hypothesis 

It is easy to see that the values of the threshold amplitudes and exponents obey the 
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scaling relations 

a + 2 P + y = 2  
(20 )  r = p /  D E y f p  

and another four relations of the same form (but with primes) for the threshold 
amplitudes and exponents. 

The first pair of relations in (20) are the same as the scaling laws in critical 
phenomena of equilibrium systems. The remaining pair gives us the relations between 
amplitudes and exponents [3]. 

It is more interesting that the stationary potential of the AOB system is asymptotically 
a general homogeneous function (GHF) of its parameters t and h. In other words, the 
well-known scaling hypothesis in GHF form holds for the critical phenomenon analogy 
in the AOB system. To show this, let us recall the asymptotic family (13) and the 
"r.,I~t,.+i^ "*"*: ^^^^," .̂.̂  *:-- I , < \  c. - . l .  ?.\ :- .L^ .P -.I 
' L " J " L p L " L L c  "LLU""a,y c;quan"rl , , - ' I .  auppus= m , r ,  " I  15 ,,IC V'llUL: U, Ul"r1 p'lrarrrcrcr 
m of the system in a steady state for small enough parameters (1, h ) ,  in other words 
m ( t ,  h )  is a solution of (15) and minimizes the asymptotic potential at ( t ,  h ) .  This 
potential is 

Y = P ( S  - 1 )  

A =  K ~ ~ D R ~ "  

ASY G ( f ,  h ) = A S Y  G ( m ( t ,  h ) ,  I ,  h )  

K 4 K  
= - m " ( t , h ) + - t m ( f ,  h ) - K h m ( t ,  h ) .  

16 2 

One can show that A1/4m(l, h )  satisfies 

J5 im'+-  A p t -  Aqh = 0 (22) 2 

with p = q =:, where A is an arbitrary positive number. In fact, substituting A1I4m(t, h )  
into the left-hand side of (22), we have 

2 
v3 &4'/4m'( f, h )  +- y'14f - A3I4h = A I f 4  
2 

The second equality is due to ( 1 5 ) .  
Equation (22) comes from ASY G j m ,  A ~ I ,  A % )  as weii as ( i 5 j  From A S Y  C ( m ,  t, irj. 

Therefore, replacing m in ASY G(m,A' t ,Aqh)  by A1/4m(l ,  h ) ,  we can obtain the 
asymptotic stationary potential of the AOB system in a steady state at ( A p t ,  A%):  

ASY G ( A P t , A q h ) = A S Y G ( A 1 / 4 m ( t ,  h ) , A P f , A q h )  

K A'P+l/41 tm( f ,  h ) - ~ A ' ~ + ' / ~ ' h m ( f ,  h )  = z A m 4 ( f ,  h ) + y  

=AASY G(t, h ) .  (23) 

K 

L 

7. Concluding remarks 

The AOB system is a typical open system far from equilibrium which exhibits the phase 
transition analogy. We have employed CT to investigate its critical phenomenon analogy. 
The values of the threshold amplitudes and exponents have been estimated. The values 
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ofthethresholdexponents,P'=P=f, S ' = S = 3 ,  y ' = ~ = $ a n d a ' = a = $ , a r e d i f f e r e n t  
from those of Landau's exponents ( P ' = P = f ,  S ' = S = 3 ,  y ' = y = l  and a '=a=o) .  
The AOB system could be a prototype of a new universality class in critical phenomena. 
Also, we have shown that the threshold amplitudes and exponents obey the same 
scaling laws as those in critical phenomena and that the well-known scaling hypothesis 
in G H F  form still holds for the critical phenomenon analogy of the AOB system. 

Our results support the close similarity between phase transitions in equilibrium 
systems and abrupt transitions of steady states in non-equilibrium systems. 

Finally, we would like to make a brief comment on the work by Ou in [8]. Expanding 
G(x, C, y )  as if it was a function of only x, and taking a rotation transformation in 
the (C,  y) parameter space, the author has artificially fitted the critical phenomenon 
analogy of the AOB system to Landau's type. But, in our opinion, the rotation transfor- 
mation makes Ou's discussion lose explicit physical meaning from the experimental 
point of view and, from the theoretical point of view, it is unreasoning and there i s  

, L G ' u l L &  U\*, L,y, LID n lUllCLLUll U1 * wily UCL'tUSG "(n, c , y ,  
is an unfolding of the function G(x, C,, yJ in the vicinity of the threshold. The real 
critical phenomenon analogy involved in the AOB system has thus been lost. 

-- &L..--"*:,,", L"":" c--*--,.&:-" e,.. 0 ..\ ̂ ^  " F ..--. :-- ̂F - - - I . .  L^^ - 1 . .  n \ 
,,U LIITUITIIC'll VLlJLJ 1 U L  
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